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LETTER TO THE EDITOR 

A nonlinear version of the equivalent bifurcation lemma 

G Cicogna 
Dipartimento di Fisica, Universitii di Pisa, Piazza Torricelli 2, 1-56100 Pisa, Italy 

Received 1 November 1990 

Abstract. We provide an extension of the equivariant bifurcation lemma to the 
case of nonlinear Lie point symmetries. In this extension, the role of the fixed sub- 
spaces under the symmetry subgroups is played by some well specified flow-invariant 
manifolds. Some typical examples are also considered. 

The 'equivariant bifurcation lemma' (see (1-51 and references therein) has become a 
useful tool in bifurcation problems, and more in general in nonlinear time-evolution 
problems [6] in the presence of linear symmetries: essentially, it allows one to  select 
some linear subspace, characterized by the property of being the fixed subspace of a 
symmetry subgroup, and to  restrict the original problem to this subspace (in many 
cases, one or two dimensional). 

In this letter, we attempt to extend this result to the case of nonlinear Lie point 
symmetries, i.e. geometrical symmetries (not necessarily linear), as originally intro- 
duced by Lie and recently reconsidered by Ovsjannikov, Olver and many others (e.g. 
[4,7-91). We shall show that this extension is actually possible, and very interesting; 
the main difficulty being that in this case the analogue of the fixed subspace may be 
given by a more or less singular manifold. 

We will consider n-dimensional autonomous bifurcation problems, in the standard 
form 

where F : A x Cl - R" is a smooth vector field defined in some neighbourood A x Cl  
of the origin in R x R". As usual in bifurcation theory, we assume there is the trivial 
stationary solution uo E 0,  i.e. 

and we look for non-trivial stationary or periodic solutions of (1) bifurcating from 
uo E 0,  as the control parameter X crosses some critical value X = A,. We can assume 

Let us state the relevant result concerning Lie point symmetries (cf [7, IO]) given 
by problem (1) in the form most suita.ble for the applications below. We use the 
notation (sum over repeated indices, i, j = 1,. . . , n) 

A, = 0. 

a, = a p t  ai = alaui F a ,  = Fiai . 
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Proposition 1. 
ators r )  of the following types (or by linear combinations of them): 

(i) r)  = @(X,t,a) (a, + Fa,) where @ is an arbitrary function; 
(ii) r)  = eiai , where Oi = Oi(A, U) satisfy the ‘determining equations’ 

The symmetries admitted by problem (1) are generated by Lie oper- 

ej aj F~ = F~ ajei (3)  

(iii) r)  = a,; 
(iv) if r )  is any symmetry generator, and h = h ( X , t , u )  is any integral of motion 
(depending on time or not) of (l), then also 

77‘ = Q ( h )  r)  

where I is arbitrary, generates a symmetry for (1). 

Remarks. 1. One could also consider other symmetry generators containing the oper- 
ator a/aX, i.e. involving changes of the parameter. These are introduced and analysed 
in [lo,  111, but are not relevant to the present discussion. 

2. Given any solution ii = C ( t ,  A, u 0 ) ,  with fixed X and initial datum t io,  each sym- 
metry of type (i) produces ‘motions’ ( t ,  21) + ( t  + E ,  Q + E F )  along ii, leaving invariant 
(globally, in general, not pointwise) the orbit of U. They essentially correspond to a 
‘reparametrization’ of time, and are not interesting to our purposes. 

3.  Putting 
h 

F Fa ,  

condition (3) for the time-independent Lie point symmetries of type (ii) can be written 
in the form of a Lie commutator 

[&] = 0 .  (4) 

These symmetries generalize the concept of the ‘equivariance’ property under 1inea.r 
group representations (cf [lo]). 

4. Condition (3) (or (4)) is certainly satisfied choosing 
A 

q = F i.e. Bi F i .  ( 5 )  

But along any solution U ,  one has 

F z 8, 
h 

h 

the symmetry F then generates the time translations 6 --+ ii(t + E ) .  

We can finally give the main result of this letter (for an analysis of the algebraic 
features and some general results based on Lie point symmetries in nonlinear time- 
evolution problems, see also [10-12]). 

Given any Lie point symmetry generator q = Bi(X,u)ai ,  and any fixed X E A,  let 
U,, = U,,(A) be the manifold defined by 

U,,@) = {U I Oi(X, U) = 0, i = 1, .  . . , n } .  (7) 

We then have the following. 
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Lemma 1. 
q, i.e. [ql, q] = 0, then 

If ql is a time-independent Lie point symmetry generator commuting with 

q1 : U,, - TU,, 

TU,, being the tangent bundle of U,,. 

Proof. Let x E U,, and G, = {g E G I gz = z}, where G is the symmetry group 
of (l), i.e. the connected Lie group generated by the Lie point symmetries of (1). If 
y = glz, then g1g2gT1 E G,, for each g, E G,; in particular if g1 is a group element 
generated by ql, and gz by q, we have $(A, y) = 0. 

Lemma 2. 

Proof. 

Remark 5. As a consequence of (iv) in the above proposition, if h is a time- 
independent integral of motion, and if rf = Q(h)q ,  condition (7)  can be met through 
the condition Q(h)  = 0,  i.e. h = constant. In this case, the result that the manifold 
U,,, is flow invariant is, in fact, obvious. However, some examples below will show 
some non-trivial aspects of this situation. 

The manifold U,,(X) is invariant, for each fixed A ,  under the flow of (1). 

It is sufficient to apply lemma 1 and remarks 3 and 4. 

Clearly, the above lemmas allow the reduction of the original problem, if the initial 
datum is in U,, , to a problem lying in the lower-dimensional manifold U,, . Now, under 
reasonable hypotheses on these manifolds, and on the restricted problem, many of the 
typical results of bifurcation theory can be easily recovered. For instance, we can say: 

Let U = U,,(X), a manifold satisfying (7),  be one dimensional (for each fixed 
X E A), and assume that U,, 0 E U for any X E A.  Assume there is a smooth 
parametrization of U,,(X) for each X such that U,,(X) is diffeomorphic to R: 

ui = u i ( X , s )  s E R u,(X,O) = 0 

then the restriction of the right-hand side of (1) to U becomes 

F(X, U(X, s ) )  3 ( X ,  s) = 0 (8) 

and the original problem becomes just a standard one-dimensional bifurcation prob- 
lem, with, in particular, F(A, 0) = 0. 

Similarly, if U = U,,(,!) is two dimensional, for each A ,  if 0 E U ,  and U is diffeo- 
morphic to R2, then usual hypotheses (e.g. the standard Hopf hypothesis [3,5,13]) 
can ensure the existence of a periodic bifurcation on U .  Different possibilities, for 
both the one- and two-dimensional cases, are considered in [12]. The assumptions 
about the regularity of the manifolds U can be substituted by different assumptions, 
concerning e.g. stability properties [14-161 or by arguments Ci la PoincarC-Bendixson 
[14,17]. For instance, if one assumes that for X = A, = 0 the solution U,, E 0 on the 
manifold is asymptotically stable, whereas for X > 0 it becomes completely unstable, 
then a stable bifurcation appears for A > 0; if U is two dimensional, the bifurcation 
sets are limit cycles, corresponding to either a periodic solution or a set of stationary 
points. 

We propose now a list of examples, that-even if very simple-may give an idea 
of some of the different situations covered by the above discussion. 
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Example 1.  This is taken from standard linear theory, and is given here to  clarify 
how the results of the linear group representation theory can be rephrased in terms of 
the above language. Let the group G = SO(3) operate on the five-dimensional space 
of real symmetric traceless 3 x 3 matrices M according to  the linear representation 

M + M’ = gMg-’ g E SO(3). (9) 
Putting M = uie i ,  i = 1, .  . . ,5, where 

el = 2-l” diag (1,-1,O) e2 =diag (1,1,-2) 
and e 3 ,  e 4 ,  e5 span the subspace of the off-diagonal matrices, it is easy to see that the 
Lie generator q3 of the rotations around the third axis has in this space the following 
differential form 

773 = ~381 - ~183 + ~ 5 8 4  - ~ 4 8 5  . 
Then, condition (7) gives that  the space U,, E {ae2 ,a  E R}  is invariant under the 
flow of any problem equivariant under the group action (9); this is precisely the re- 
sult obtained from linear theory: U,, is in fact the fixed subspace under the isotropy 
subgroup generated by q3. 

Example 2. Let now U E ( x , y )  E R2, and consider the problem 
i. = f ( X ,  x)  

y = 2Xxf(X, x) - g( A, x )  (y - Xx2) 

q = (y - Ax2) a, 
where f , g  are arbitrary functions. The problem admits the symmetry generated by 

(10) 
and for each fixed X there is the flow-invariant manifold U = { ( x , y )  I y = Ax2}. If 
e.g. f = Ax - x2,  there is a stationary bifurcation given by 

x = s  y = s  X = s  ( S E R ) .  
Example 3. 
grals of motion in this context. With U 

This and the following examples may illustrate the role played by inte- 

x = Ax - xr2 - c y  

y = X y - y r 2 + ~ x .  

( x ,  y) E R 2 ,  and r2 = x2  + y 2 ,  consider 

Both for E = 0 and E # 0, this problem possesses the obvious rotation symmetry 

Applying condition (7) to  this operator, we obtain only the origin (0,O). According to 
remark 5, we look now for (time-independent) integrals of mot,ion. If E = 0, we obtain 
Y / X  = constant, and, in fact, in each straight line from the origin there is stationary 
bifurcation. If 6 # 0, we have instead 

q = xay - yd, . (11) 

X - r2 
r2 

exp (: tan-’ f )  = constant 

which defines (for each fixed X # 0) a very singular one-dimensional manifold. Notice 
in particular the singularity for I, y - 0,  and, actually, no stationary bifurcation exist,s 
along these manifolds (clearly, there is instead a Hopf bifurcation, and the existence 
of limit cycles shows that this singular behaviour cannot be avoided, according to 
well known arguments [14, ch 11, section 51). I t  can also be noted that the two 
cases E = 0 and E # 0 actually possess different symmetry groups (O(2) and SO(2) 
respectively), which cannot be distinguished a t  the algebraic level (equation (1 l)), but 
are distinguished by the different form of the respective flow-invariant manifolds. 
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Ezample 4. Let U E (I, y, z )  E R3, and consider problems of the following form 

= If(& 2) - Y d X ,  2) 

j l  = Y f ( h  z )  + w(h z )  
i = Zf(X,Z). 

Q1 = cay - Y8, 

Symmetries for these problems are clearly generated by 

q2 = xa, + ya,. (12) 
Condition (7) applied to either v1 or q2 gives for U,, just the z axis, thus obtaining 
a standard one-dimensional problem. Time-independent integrals of motion of the 
above problem assume constant values along the cones 

x 2  + y2 = constant x z2 

tan-'(y/z) + X(X, z )  = constant 

(13) 

(14) 

and respectively the surfaces 

where x is a function depending on f , g .  Despite the singularities, there may be 
bifurcation (depending on the functions f ,g ) .  For example, if for z = zo, there is 
X = X(zo) such that f(A(zo),zo) = 0, with X(zo) + 0 when zo -.-* 0, then each cone 
(13) contains a bifurcating solution at  the level z = to. If g(X(zo),zo) # 0,  this is 
a periodic solution (with period 27r/g(A(z0), to) ) ;  if g(X(zo), z o )  = 0, this is a set of 
stationary solutions. The other manifold (14) does not contain, in general, periodic 
bifurcating solutions. 

It is a pleasure to thank my friend Giuseppe Gaeta for many discussions and useful 
comments. 
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